227 research outputs found

    A Helioseismic Perspective on the Depth of the Minimum Between Solar Cycles 23 and 24

    Get PDF
    The solar-activity-cycle minimum observed between Cycles 23 and 24 is generally regarded as being unusually deep and long. That minimum is being followed by one of the smallest amplitude cycles in recent history. We perform an in-depth analysis of this minimum with helioseismology. We use Global Oscillation Network Group (GONG) data to demonstrate that the frequencies of helioseismic oscillations are a sensitive probe of the Sun's magnetic field: The frequencies of the helioseismic oscillations were found to be systematically lower in the minimum following Cycle 23 than in the minimum preceding it. This difference is statistically significant and may indicate that the Sun's global magnetic field was weaker in the minimum following Cycle 23. The size of the shift in oscillation frequencies between the two minima is dependent on the frequency of the oscillation and takes the same functional form as the frequency dependence observed when the frequencies at cycle maximum are compared with the cycle-minimum frequencies. This implies that the same near-surface magnetic perturbation is responsible. Finally, we determine that the difference in the mean magnetic field between the minimum preceding Cycle 23 and that following it is approximately 1G.Comment: Accepted for publication in Solar Physics, 16 pages, 4 figures, 4 table

    Properties of quasi-periodic pulsations in solar flares from a single active region

    Get PDF
    We investigate the properties of a set of solar flares originating from a single active region (AR) that exhibit QPPs, and look for signs of the QPP periods relating to AR properties. The AR studied, best known as NOAA 12192, was unusually long-lived and produced 181 flares. Data from the GOES, EVE, Fermi, Vernov and NoRH observatories were used to determine if QPPs were present in the flares. For the soft X-ray GOES and EVE data, the time derivative of the signal was used. Power spectra of the time series data (without any form of detrending) were inspected, and flares with a peak above the 95% confidence level in the spectrum were labelled as having candidate QPPs. The confidence levels were determined taking account of uncertainties and the possible presence of red noise. AR properties were determined using HMI line of sight magnetograms. A total of 37 flares (20% of the sample) show good evidence of having QPPs, and some of the pulsations can be seen in data from multiple instruments and in different wavebands. The QPP periods show a weak correlation with the flare amplitude and duration, but this may be due to an observational bias. A stronger correlation was found between the QPP period and duration of the QPP signal, which can be partially but not entirely explained by observational constraints. No correlations were found with the AR area, bipole separation, or average magnetic field strength. The fact that a substantial fraction of the flare sample showed evidence of QPPs using a strict detection method with minimal processing of the data demonstrates that these QPPs are a real phenomenon, which cannot be explained by the presence of red noise or the superposition of multiple unrelated flares. The lack of correlation between the QPP periods and AR properties implies that the small-scale structure of the AR is important, and/or that different QPP mechanisms act in different cases.Comment: 23 pages, 57 figures. Accepted for publication by Astronomy & Astrophysic

    Oscillations in stellar superflares

    Get PDF
    Two different mechanisms may act to induce quasi-periodic pulsations (QPP) in whole-disk observations of stellar flares. One mechanism may be magneto-hydromagnetic (MHD) forces and other processes acting on flare loops as seen in the Sun. The other mechanism may be forced local acoustic oscillations due to the high-energy particle impulse generated by the flare (known as `sunquakes' in the Sun). We analyze short-cadence Kepler data of 257 flares in 75 stars to search for QPP in the flare decay branch or post-flare oscillations which may be attributed to either of these two mechanisms. About 18 percent of stellar flares show a distinct bump in the flare decay branch of unknown origin. The bump does not seem to be a highly-damped global oscillation because the periods of the bumps derived from wavelet analysis do not correlate with any stellar parameter. We detected damped oscillations covering several cycles (QPP), in seven flares on five stars. The periods of these oscillations also do not correlate with any stellar parameter, suggesting that these may be a due to flare loop oscillations. We searched for forced global oscillations which might result after a strong flare. To this end, we investigated the behaviour of the amplitudes of solar-like oscillations in eight stars before and after a flare. However, no clear amplitude change could be detected. We also analyzed the amplitudes of the self-excited pulsations in two delta Scuti stars and one gamma Doradus star before and after a flare. Again, no clear amplitude changes were found. Our conclusions are that a new process needs to be found to explain the high incidence of bumps in stellar flare light curves, that flare loop oscillations may have been detected in a few stars and that no conclusive evidence exists as yet for flare induced global acoustic oscillations (starquakes).Comment: 13 pages, 14 figures, 3 table

    A new efficient method for determining weighted power spectra: detection of low-frequency solar p-modes by analysis of BiSON data

    Full text link
    We present a new and highly efficient algorithm for computing a power spectrum made from evenly spaced data which combines the noise-reducing advantages of the weighted fit with the computational advantages of the Fast Fourier Transform (FFT). We apply this method to a 10-year data set of the solar p-mode oscillations obtained by the Birmingham Solar Oscillations Network (BiSON) and thereby uncover three new low-frequency modes. These are the l=2, n=5 and n=7 modes and the l=3, n=7 mode. In the case of the l=2, n=5 modes, this is believed to be the first such identification of this mode in the literature. The statistical weights needed for the method are derived from a combination of the real data and a sophisticated simulation of the instrument performance. Variations in the weights are due mainly to the differences in the noise characteristics of the various BiSON instruments, the change in those characteristics over time and the changing line-of-sight velocity between the stations and the Sun. It should be noted that a weighted data set will have a more time-dependent signal than an unweighted set and that, consequently, its frequency spectrum will be more susceptible to aliasing.Comment: 11 pages, 7 Figures, accepted for publication in MNRAS, Figure 6 had to be reduced in size to upload and so may be difficult to view on screen in .ps versio

    Changes in the sensitivity of solar p-mode frequency shifts to activity over three solar cycles

    Get PDF
    Low-degree solar p-mode observations from the long-lived Birmingham Solar Oscillations Network (BiSON) stretch back further than any other single helioseismic data set. Results from BiSON have suggested that the response of the mode frequency to solar activity levels may be different in different cycles. In order to check whether such changes can also be seen at higher degrees, we compare the response of medium-degree solar p-modes to activity levels across three solar cycles using data from Big Bear Solar Observatory (BBSO), Global Oscillation Network Group (GONG), Michelson Doppler Imager (MDI) and Helioseismic and Magnetic Imager (HMI), by examining the shifts in the mode frequencies and their sensitivity to solar activity levels. We compare these shifts and sensitivities with those from radial modes from BiSON. We find that the medium-degree data show small but significant systematic differences between the cycles, with solar cycle 24 showing a frequency shift about 10 per cent larger than cycle 23 for the same change in activity as determined by the 10.7 cm radio flux. This may support the idea that there have been changes in the magnetic properties of the shallow subsurface layers of the Sun that have the strongest influence on the frequency shifts.Comment: 6 pages, 3 figures, accepted by MNRAS 3rd July 201

    A Multi-Instrument Investigation of the Frequency Stability of Oscillations Above the Acoustic Cut-Off Frequency with Solar Activity

    Get PDF
    Below the acoustic cut-off frequency, oscillations are trapped within the solar interior and become resonant. However, signatures of oscillations persist above the acoustic cut-off frequency, and these travelling waves are known as pseudomodes. Acoustic oscillation frequencies are known to be correlated with the solar cycle, but the pseudomode frequencies are predicted to vary in anti-phase. We have studied the variation in pseudomode frequencies with time systematically through the solar cycle. We analyzed Sun-as-a-star data from Variability of Solar Irradiance and Gravity Oscillations (VIRGO), and Global Oscillations at Low Frequencies (GOLF), as well as the decomposed data from Global Oscillation Network (GONG) for harmonic degrees 0l2000\le l \le 200. The data cover over two solar cycles (1996--2021, depending on instrument). We split them into overlapping 100-day long segments and focused on two frequency ranges, namely 56005600--6800μHz6800\,\rm\mu Hz and 56005600--7800μHz7800\,\rm\mu Hz. The frequency shifts between segments were then obtained by fitting the cross-correlation function between the segments' periodograms. For VIRGO and GOLF, we found no significant variation of pseudomode frequencies with solar activity. However, in agreement with previous studies, we found that the pseudomode frequency variations are in anti-phase with the solar cycle for GONG data. Furthermore, the pseudomode frequency shifts showed a double-peak feature at their maximum, which corresponds to solar activity minimum, and is not seen in solar activity proxies. An, as yet unexplained, pseudo-periodicity in the amplitude of the variation with harmonic degree ll is also observed in the GONG data

    Low-degree multi-spectral p-mode fitting

    Get PDF
    We combine unresolved-Sun velocity and intensity observations at multiple wavelengths from the Helioseismic and Magnetic Imager and Atmospheric Imaging Array onboard the Solar Dynamics Observatory to investigate the possibility of multi-spectral mode-frequency estimation at low spherical harmonic degree. We test a simple multi-spectral algorithm using a common line width and frequency for each mode and a separate amplitude, background and asymmetry parameter, and compare the results with those from fits to the individual spectra. The preliminary results suggest that this approach may provide a more stable fit than using the observables separately

    The microwave digestion of solids

    Get PDF
    Bibliography: leaves 115-116.Microwave ovens have been available for domestic cooking since 1956. This method of heating is very efficient compared to conventional cooking methods. As a result many applications have arisen particularly in the field of analytical chemistry. Most routine analysis of biological and chemical samples by atomic absorption spectroscopy (AAS) and inductively coupled plasma atomic emission spectroscopy (ICP-AES) involves the time consuming operation of digesting the samples in acid on a hot plate. However, much time saving has been demonstrated by the use of microwave digestion, and successful digestions have been achieved in 10% of the time required for traditional methods. The first digestions using microwave heating were performed in open vessels. However many problems were identified
    corecore